Chem. Ber. 107, 2176-2185 (1974)

Fragmentierungsreaktionen an Carbonylverbindungen mit β-ständigen elektronegativen Substituenten, XXVI¹⁾

Reaktion von 1-(Tosyloxymethyl)- und 1-(Trifluormethylsulfonyloxymethyl)bicyclo[3.3.1]nonan-9-on mit Nucleophilen

Helga Marschall* und Friedrich Vogel

Institut für Organische Chemie der Technischen Universität Berlin, D-1000 Berlin 12, Straße des 17. Juni 135

Eingegangen am 18. Februar 1974

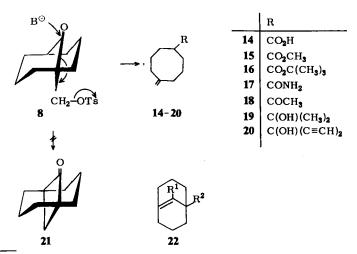
Ausgehend vom Ketoester 3 wird das bicyclische Ketotosylat 8 und das Triflat 9 dargestellt. 8 und 9 reagieren mit methanolischer NaOH, Kalium-tert-butylat, NaNH₂, NaC≡CH und CH₃Li unter Fragmentierung zu den 5-Methylencyclooctan-Derivaten 14−20. Während 8 nur durch Cyanid-Ionen in DMSO zu 10 substituiert wird, tritt bei 9 auch mit dem Acetat-, Azid- und Dimedon-Anion Neopentylsubstitution zu 11−13 ein. Durch NaBH₄-Reduktion von 8 wird der Tosyloxyalkohol 25 erhalten, dessen Umsetzung mit NaHCO₃ in DMSO zum tricyclischen Carbonat 26 führt.

Fragmentation Reactions of Carbonyl Compounds with Electronegative Substituents in the β -Position, XXVI 1)

Reaction of 1-(Tosyloxymethyl)- and 1-(Trifluoromethylsulfonyloxymethyl)bicyclo[3.3.1]nonan-9-one with Nucleophiles

The bicyclic ketotosylate 8 and the triflate 9 were synthesized starting from the ketoester 3. 8 and 9 react with methanolic NaOH, potassium *tert*-butoxide, NaNH₂, NaC \equiv CH, and CH₃Li with fragmentation to yield the 5-methylenecyclooctane derivatives 14-20. Whereas direct substitution of 8 occurs only with cyanide ions in DMSO to 10, neopentyl substitution of the triflate 9 is also possible with acetate, azide, and the dimedone anion (\rightarrow 11-13). NaBH₄ reduction of 8 leads to the formation of the tosyloxy alcohol 25, which reacts with NaHCO₃ in DMSO to give the tricyclic carbonate 26.

Bei der Umsetzung von 2-Tosyloxymethyl- (1, X = OTs) und 2-Halogenmethyl-2-alkylcyclohexanonen (1, X = Br, Cl) mit wäßrig-methanolischem Alkali bzw. mit Alkoholaten wurden 1-Alkylbicyclo[3.1.1]- und -[3.2.0]heptanone erhalten. Die durch Grob-Fragmentierung 2) entstehende 6-Alkyl-6-heptensäure 2 wurde nur in geringer Ausbeute isoliert $^{3a-h}$).


XXV. Mitteil.: H. Marschall, K. Tantau und P. Weyerstahl, Chem. Ber. 107, 887 (1974).
 C. A. Grob und P. W. Schieß, Angew. Chem. 79, 1 (1967); Angew. Chem., Int. Ed. Engl. 6, 1 (1967).

^{3) 3}a) K. B. Wiberg und G. W. Klein, Tetrahedron Lett. 1963, 1043. — 3b) Y. Tsuda, T. Tanno, U. Ukai und K. Isobe, ebenda 1971, 2009. — 3c) E. Wenkert, P. Bakuzis, R. J. Baumgarten, D. Dodrell, P. W. Jeffs, C. L. Leicht, R. A. Mueller und A. Yoshikoshi, J. Amer. Chem. Soc. 92, 1617 (1970). — 3d) S. Julia and C. Guerenry, Bull. Soc. Chim. France 1965, 2994. — 3c) F. Nerdel, D. Frank und H. Marschall, Chem. Ber. 100, 720 (1967). — 3f) H. Marschall ebenda 105, 541 (1972). — 3g) R. H. Bisceglia und C. J. Cheer, J. C. S. Chem. Commun. 1973, 165. — 3h) S. Wolff und W. C. Agosta, ebenda 1973, 771.

Wir haben nun das bicyclische Ketotosylat 8 aus dem bereits bekannten Ketoester⁴⁾ 3 durch Acetalisierung, Reduktion, Tosylierung und Acetalhydrolyse $(3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 8)$ dargestellt.

Reaktion des Tosylats 8 mit Nucleophilen

Bei der Umsetzung von 8 mit Natriummethylat sollte Fragmentierung zum Cyclooctanderivat 15 eintreten; denn die S_N i-Reaktion unter Bildung eines tricyclischen Ketons 21 müßte über das Enol 22 ($R^1 = OH$, $R^2 = CH_2OTs$) verlaufen, und dieses sollte nach der *Bredt*-Regel⁵⁾ instabil sein. Das entsprechende Olefin 22 ($R^1, R^2 = H$) ist bisher nicht beschrieben.

⁴⁾ A. C. Cope und E. S. Graham, J. Amer. Chem. Soc. 73, 4702 (1951).

⁵⁾ G. Köbrich, Angew. Chem. 85, 494 (1973); Angew. Chem., Int. Ed. Engl. 12, 464 (1973).

Das bicyclische Ketoester-tosylat 23 fragmentiert mit Natriumäthylat ausschließlich zum geminalen Diester 24%, jedoch wird diese Reaktion hier durch die Äthoxy-

carbonyl-Funktion zusätzlich begünstigt, da auch das Tosylat 1 ($R = CO_2C_2H_5$, X = OTs) ausschließlich zur Methylenpimelinsäure 2 ($R = CO_2H$) fragmentiert⁷⁾.

Bei der Umsetzung des Tosylats 8 mit methanolischer Natronlauge wird das Fragmentierungsprodukt 14 nach mehrtägigem Erwärmen erhalten, erst mit der stärkeren Base Kalium-tert-butylat läßt sich die Reaktionsdauer verkürzen. Natriumamid und Methyllithium liefern unter Fragmentierung in glatter Reaktion 17 bzw. 19 (als Gemisch mit 13% 18).

Mit Natriumacetat und -azid reagiert 8 nicht. Mit KCN in DMSO wird wenig Nitril 10 isoliert.

Reaktion des Triflats 9 mit Nucleophilen

Da die Trifluormethylsulfonyloxy(= Triflat)-Gruppe, verglichen mit der Tosylatgruppe eine um etwa den Faktor 10⁴ reaktivere Abgangsgruppe darstellt⁸, stellten wir aus 7 auch das Triflat 9 her. Aus 9 kann bereits innerhalb von 3 Stunden mit wäßrig-methanolischer NaOH 14 erhalten werden. Mit Methylmagnesiumjodid und Natriumacetylid reagiert 9 ebenfalls unter Fragmentierung zu den *tert*-Carbinolen 19 bzw. 20.

Auch die Umsetzung mit KCN, Natrium-acetat, -azid und Dimedon-natrium verläuft glatt, wobei die Neopentylsubstitutionsprodukte 10-13 isoliert werden. Dabei treten zum Teil nicht identifizierte Nebenprodukte auf, die vermutlich durch Umlagerung des gebildeten Neopentyl-Kations entstehen.

Das Tosylat 8 bzw. das Triflat 9 kann offensichtlich nur nach zwei verschiedenen Wegen reagieren, nämlich unter Substitution bzw. unter Fragmentierung. Die bei der Umsetzung von β -(Tosyloxy)aldehyden 9 mit NaBH₄, $^{\circ}$ OCH₃, CH₃MgJ, $^{\circ}$ C \equiv CH und $^{\circ}$ CN beobachtete Oxetanbildung trat hier nie ein, obwohl ein derartiges Oxetan als Dreiding-Modell aufbaubar ist.

Weitere Umsetzungen von 8 und 9

Bei der Reduktion des Triflats 9 mit NaBH₄ bzw. LiBH₄ werden je nach Reaktionsbedingung verschiedene Produkte erhalten, die offensichtlich durch Neopentylumlagerung entstehen. Da Vergleichsverbindungen nicht zugänglich waren, wurden diese Versuche jedoch nicht weiter verfolgt.

⁶⁾ G. L. Buchanan und G. A. R. Young, J. C. S. Chem. Commun. 1973, 732.

⁷⁾ K. Gerner, Dissertation, Techn. Univ. Berlin 1969.

⁸⁾ Tah Mun Su, W. F. Sliwinski und P. von R. Schleyer, J. Amer. Chem. Soc. 91, 5386 (1969).

⁹⁾ K. Lucas, P. Weyerstahl, H. Marschall und F. Nerdel, Chem. Ber. 104, 3607 (1971).

Die NaBH₄-Reduktion von 8 führt zum sek. Alkohol 25. Dessen Reaktion mit DMSO und NaHCO₃ ergibt nicht den β-Hydroxyaldehyd, sondern liefert das tricyclische Carbonat 26 in 76 proz. Ausbeute.

HO CH₂OTs NaHCO₃
$$H_C$$
 H_A H_B : $\tau = 6.12, 6.02$ (AB-Spektrum, $J = 10.5$ Hz)

25 H_C H_A H_B H_C : $d \tau = 5.77 (J = 3.5$ Hz)

Diese unerwartete nucleophile Substitution durch das Hydrogencarbonat-Anion wurde kürzlich bei dem Versuch beobachtet, das bicyclische Hydroxytosylat 27 nach der DMSO/NaHCO₃-Methode¹⁰⁾ zum Aldehyd zu oxidieren, statt dessen wurde das tricyclische Carbonat 28 isoliert¹¹⁾.

$$p - H_3C - C_6H_4 OH \qquad p - H_3C - C_6H_4 H_C O \qquad H_C: \tau = 6.0 \text{ (s,br)}$$

Der Ketoaldehyd 29 konnte aus dem Triflat 9, jedoch weder aus den Tosylaten 8 bzw. 6 durch Oxidation mit NaHCO₃/DMSO erhalten werden.

Wir haben zudem versucht, den Grundkörper 33 darzustellen. Das Thioacetal 30 (aus 7), das durch Reduktion, Tosylierung (\rightarrow 31 \rightarrow 32) und erneute Reduktion in 33 übergeführt werden sollte, lieferte jedoch auch bei mehrtägigem Erwärmen mit Raney-Nickel in Äthanol nur Spuren von 31. Auch der Versuch, die Tosylatgruppe von 6 mit LiAlH₄ zur Methylgruppe zu reduzieren, scheiterte, da, wie schon bei anderen Tosylaten mit Neopentylstruktur beobachtet, O-S-Spaltung zu 5 eintrat.

¹⁰⁾ P. G. Gassmann und D. S. Patton, J. Amer. Chem. Soc. 90, 7276 (1968).

¹¹⁾ N. Bosworth, P. D. Magnus und R. Moore, J. C. S. Perkin I 1973, 2694.

Experimenteller Teil

Die IR- und NMR-Spektren wurden, sofern nicht anders angegeben, in CCl₄ aufgenommen.

Apparative Ausrüstung: PE 257 und PE 225, Varian A-60 D und HA-100 (TMS als innerer Standard), Varian M-66 (Massenspektren, 70 eV), Perkin-Elmer-Fraktometer F-7 (analyt. GC, Glassäule 28 S 557, Trägergas N₂), Mettler FP-1 (Schmpp, unkorrigiert).

Die Analysen verdanken wir unserer mikroanalytischen Abteilung unter Leitung von Frau Dr. U. Faass.

Übliche Aufarbeitung heißt: 3-5 mal mit Äther extrahieren, mit NaHCO₃ bzw. verd. H₂SO₄-Lösung säure- bzw. basenfrei waschen und über MgSO₄ trocknen.

Zur Säulenchromatographie wurde Kieselgel (Korngröße 0.15-0.30 mm) verwendet. Zum Eluieren benutzte man Benzin $(30-60^{\circ}\text{C})/\text{Ä}$ ther-Gemische. Für die PSC wurden Merck-Fertigplatten mit Kieselgel F_{254} verwendet.

Die Ausgangsverbindung 3 wird nach Cope⁴⁾ dargestellt.

1-(Äthoxycarbonyl)bicyclo[3.3.1]nonan-9-on-äthylenacetal (4): 20.4 g (97 mmol) 3 und 8.8 g (142 mmol) Äthylenglycol werden mit 250 mg p-Toluolsulfonsäure in 150 ml Chloroform 8 h am Wasserabscheider erhitzt, wie üblich aufgearbeitet und am Kugelrohr destilliert. Sdp. 110°C/0.01 Torr. Ausb. 23.7 g (96%).

IR: 1725, 1740 (CO₂R), 1240, 1220, (Ester-C-O), 1140, 1125, 1065 cm⁻¹ (Acetal-C-O). — NMR (CDCl₃): $\tau = 8.78$ (t, J = 7 Hz, CH₃), 6.12 (s, O-CH₂-CH₂-O), 5.94 (q, J = 7 Hz, CO₂CH₂). — MS: m/e = 254 (60%, M[©]), 181 (100%), 99 (90%).

C₁₄H₂₂O₄ (254.3) Ber. C 66.12 H 8.72 Gef. C 66.19 H 8.50

1-(Hydroxymethyl)bicyclo[3.3.1]nonan-9-on-äthylenacetal (5): 23.7 g (93 mmol) 4 werden in 100 ml absol. Äther gelöst und zu einer Suspension von 4.0 g (105 mmol) LiAlH₄ in 50 ml absol. Äther getropft, I h unter Rückfluß erhitzt, mit 20 ml gesätt. NH₄Cl-Lösung hydrolysiert und wie üblich aufgearbeitet. Ausb. 15.8 g (79%). Schmp. 49°C (aus Benzin).

1R: 3550 (br, OH), 1130, 1105, 1040, 1020 cm^{-1} (C-O). - NMR (CDCl₃): $\tau = 7.30$ (s, OH), 6.67 (s, CH₂O), 6.07 (s, O-CH₂-CH₂-O). - MS: m/e = 212 (18%, M^{\oplus}), 181 (100%), 99 (25%).

C₁₂H₂₀O₃ (212.3) Ber. C 67.89 H 9.50 Gef. C 68.25 H 9.67

p-Toluolsulfonat (6): Zu 5.0 g (26 mmol) Tosylchlorid, gelöst in 20 ml absol. Pyridin und 50 ml absol. Äther, werden unter Rühren 5.0 g (23 mmol) 5, gelöst in 50 ml absol. Äther, getropft, 20 h bei Raumtemp. gerührt, auf 30 g Eis und 10 ml konz. Salzsäure gegossen und wie üblich aufgearbeitet. Ausb. 6.8 g (79%). Schmp. 115°C (aus Äthanol).

IR (KBr): 1595 (Aromat), 1355, 1185, 1173, 970, 938, 850 cm⁻¹ (SO₂OR). -NMR (CDCl₃): $\tau = 6.19$ (s, br, $O - CH_2 - CH_2 - O$), 6.07 (s, CH_2OTs).

C₁₉H₂₆O₅S (366.5) Ber. C 62.27 H 7.15 S 8.75 Gef. C 62.32 H 7.42 S 8.47

1-(Hydroxymethyl)bicyclo[3.3.1]nonan-9-on (7): 11.7 g (55 mmol) 5 werden mit 100 ml Methanol, 20 ml Wasser und 1.5 ml konz. Salzsäure 5 h unter Rückfluß erhitzt. Nach üblicher Aufarbeitung wird am Kugelrohr destilliert. Sdp. $65-75^{\circ}$ C/0.01 Torr, Ausb. 8.3 g (90%).

IR: 3570, 3480 (br, OH), 1710 cm⁻¹ (CO). – NMR: $\tau = 8.8 - 7.7$ (m, CH₂), 7.4 – 7.3 (m, CH), 7.4 – 7.1 (m, OH), 6.72 (s, CH₂O). – MS: m/e = 168 (7%, M[©]), 150 (60%), 139 (40%), 134 (27%), 121 (100%), 95 (40%).

C₁₀H₁₆O₂ (168.2) Ber. C 71.39 H 9.59 Gef. C 71.02 H 9.72

p-Toluolsulfonat (8): Durch 4stdg. Erwärmen von 24.7 g (67 mmol) 6 in 250 ml Methanol, 40 ml Wasser und 3 ml konz. Salzsäure und übliche Aufarbeitung. Ausb. 19.2 g (88%). Schmp. 87°C (aus Äthanol).

IR (KBr): 1705 (CO), 1600 (Aromat), 1360, 1190, 1180, 980, 855 cm⁻¹ (SO₂OR). — NMR (CDCl₃): $\tau = 8.7 - 7.4$ (m, CH₂, CH), 6.08 (s, CH₂OTs).

C₁₇H₂₂O₄S (322.4) Ber. C 63.33 H 6.88 S 9.95 Gef. C 63.15 H 7.10 S 10.47

Trifluormethansulfonat (9): 8.3 g (49 mmol) 7, gelöst in 50 ml absol. CH_2Cl_2 , werden bei $-5^{\circ}C$ unter Rühren zu 14.0 g (49 mmol) Trifluormethansulfonsäureanhydrid ¹²⁾ und 2.65 g (24 mmol) Na_2CO_3 getropft, 30 min bei Raumtemp. gerührt, mit Wasser versetzt und wie üblich aufgearbeitet. Ausb. 9.3 g (63%). Schmp. 30°C (aus Benzin bei $-20^{\circ}C$).

IR: 1715 (CO), 1415, 1245, 1210, 1145 (SO₂CF₃)¹³⁾, 950, 935, 863 cm⁻¹ (SO₂OR). – NMR: $\tau = 8.6 - 7.3$ (m, CH₂, CH), 5.66 (s, CH₂OTf). – MS: m/e = 300 (40%, M^{\oplus}), 167 (37%), 66 (100%).

C₁₁H₁₅F₃O₄S (300.3) Ber. C 44.00 H 5.03 F 18.98 S 10.68 Gef. C 43.67 H 4.89 F 18.10 S 10.74

1-(Hydroxymethyl)bicyclo[3.3.1]nonan-9-on-äthylenthioacetal (30): 0.90 g (5.3 mmol) 7 werden mit 3 ml Thioglycol und 50 mg p-Toluolsulfonsäure in 50 ml CHCl₃ 3 d am Wasserabscheider erhitzt und wie üblich aufgearbeitet. Ausb. 1.3 g (99%), Schmp. 102°C (aus Benzin).

IR (KBr): 3400 (br, OH), 1045, 1028, 1005 cm⁻¹ (C-O). - NMR: $\tau = 7.43$ (s, OH), 6.80 (s, S-CH₂-CH₂-S), 6.51 (s, CH₂O). - MS: m/e = 244 (8%, M^{\text{\tiny{\text{\tiny{\text{\tinx{\text{\te}\tinx{\text{\ti}\text{\text{\text{\text{}

C₁₂H₂₀OS₂ (244.4) Ber. C 58.97 H 8.25 S 26.24 Gef. C 59.37 H 8.56 S 25.71

Umsetzung von 8 und 9 mit Nucleophilen Fragmentierungsreaktionen zu 14-20

1) mit NaOH

a) 300 mg (1.00 mmol) 9 werden mit 0.10 g (2.5 mmol) NaOH in 2.5 ml CH₃OH und 2.0 ml Wasser 3 h bei 80-90°C gerührt, mit Wasser verdünnt und mit Äther aufgearbeitet: Kein Neutralteil. Die wäßrige Phase wird mit verd. Schwefelsäure angesäuert und erneut mit Äther 4 mal extrahiert: Säureteil 148 mg, farblose Kristalle, Schmp. 68°C: 5-Methylen-1-cyclooctancarbonsäure (14), Ausb. 88%, Schmp. 73°C (aus Benzin/Äther).

IR (KBr): 3500-2500 (br, CO₂H), 3070 (=CH₂), 1710 (CO₂H), 1635, 890 cm⁻¹ (=CH₂). -NMR (CDCl₃): $\tau = 8.8-8.0$ (m, 4 CH₂), 8.0-7.6 (m, 2 CH₂), 7.5-7.1 (m, CH), 5.23 (s, =CH₂), -0.3 bis -0.1 (s, br, CO₂H).

C₁₀H₁₆O₂ (168.2) Ber. C 71.39 H 9.59 Gef. C 71.03 H 9.36

5-Methylen-1-cyclooctancarbonsäure-methylester (15): Aus 14 mit Diazomethan; Sdp. 110-120°C/14 Torr (Kugelrohr). n_D^{21} 1.4791.

IR: 3070 (=CH₂), 1735 (CO₂R), 1635, 890 cm⁻¹ (=CH₂). - NMR: $\tau = 8.8-8.1$ (m, 4 CH₂), 8.1-7.6 (m, 2 CH₂), 7.6-7.1 (m, CH), 6.45 (s, CO₂CH₃), 5.25 (s, =CH₂). - MS: m/e = 182 (40%, M^{\oplus}), 150 (56%), 123 (90%), 81 (100%).

C₁₁H₁₈O₂ (182.3) Ber. C 72.49 H 9.95 Gef. C 72.70 H 10.17

b) 309 mg (0.96 mmol) 8 werden mit 0.10 g (2.5 mmol) NaOH in 2.5 ml CH₃OH und 2.0 ml Wasser 3 d bei 80-90°C gerührt und wie oben mit Äther aufgearbeitet. Kein Neutralteil. Säureteil: 135 mg (84%) 14. Schmp. 72°C.

¹²⁾ J. Burdon, J. Farazmand, M. Stacey und J. Tatlow, J. Chem. Soc. 1957, 2574.

¹³⁾ E. Lamparter und M. Hanack, Chem. Ber. 106, 3216 (1973).

2) mit NaOCH3

300 mg (1.0 mmol) 9 werden zu einer Lösung von 60 mg (2.6 mmol) Natrium in 5 ml absol. Methanol gegeben, 3 h unter Rückfluß und unter N_2 erwärmt und wie bei 1) aufgearbeitet. Neutralteil: 0.18 g, wird am Kugelrohr destilliert. Sdp. $60-65^{\circ}$ C/0.05 Torr, Ausb. 126 mg (69%) 15. Kein Säureteil.

- 3) mit Kalium-tert-butylat
- a) 300 mg (1.0 mmol) 9 werden zu einer Lösung von 80 mg (2.05 mmol) Kalium in 5 ml absol. tert-Butylalkohol gegeben, 1 h unter N_2 auf 80°C erwärmt und wie bei 1) aufgearbeitet. Neutralteil: 137 mg. Nach Destillation am Kugelrohr werden 104 mg (47%) 5-Methylen-1-cyclooctancarbonsäure-tert-butylester (16) erhalten. Sdp. 70-80°C/0.05 Torr.

IR: $3070 (= CH_2)$, $1720 (CO_2R)$, $1635 (= CH_2)$, $1365 (C(CH_3)_3)$, $895 cm^{-1} (= CH_2)$. — NMR: $\tau = 8.60$ (s, C(CH₃)₃), 8.5 - 7.3 (m, $6 CH_2$, CH), 5.23 (s, $= CH_2$). — MS: m/e = 168 (100%, M[©] – CH₂ = C(CH₃)₂), 151 (76%), 123 (90%), 81 (82%).

 $C_{14}H_{24}O_2$ (224.3) Ber. C 74.95 H 10.78 Gef. C 74.78 H 10.72 Kein Säureteil.

b) 312 mg (0.97 mmol) **8** werden zu einer Lösung von 90 mg (2.3 mmol) Kalium in 3.5 ml absol. *tert*-Butylalkohol gegeben und unter N_2 6 h auf $80-90^{\circ}$ C erwärmt. Neutralteil: 134 mg (62%) **16**. Säureteil: 47 mg (29%) **14**.

4) mit NaNH2

400 mg (1.24 mmol) 8 werden mit 0.15 g (3.8 mmol) NaNH₂ in 10 ml absol. Dioxan 4 d bei Raumtemp. gerührt, mit Methanol/Wasser zersetzt und mit CH_2Cl_2 extrahiert. Ausb. 180 mg (87%) 5-Methylen-1-cyclooctancarboxamid (17). Schmp. 136-137°C (aus Benzin/Äther).

IR (KBr): 3370, 3180 (CONH₂), 3060 (=CH₂), 1650 (br, CONH₂), 1620, 885 cm⁻¹ (=CH₂). - NMR (CDCl₃): $\tau = 8.6 - 8.0$ (m, 4 CH₂), 8.0 - 7.3 (m, 2 CH₂, CH), 5.22 (s, =CH₂), 4.9 - 4.0 (s, br, CONH₂). - MS (30 eV): m/e = 167 (< 1%, M[⊕]), 123 (2%), 89 (5%), 73 (23%), 58 (100%).

 $C_{10}H_{17}NO$ (167.4) Ber. C 71.81 H 10.25 N 8.38 Gef. C 72.07 H 10.41 N 8.52 5) mit CH_3Li

3.22 g (10 mmol) 8 werden in 40 ml absol. Äther suspendiert und bei Raumtemp. unter Rühren und unter N_2 20 ml ca. 1.5 m CH₃Li-Lösung¹⁴⁾ zugetropft, nach 3 h Erwärmen wird wie üblich aufgearbeitet (NH₄Cl-Lösung, Äther). Der Äther wird über eine 20-cm-Vigreux-Kolonne abdestilliert und das Produkt am Kugelrohr destilliert. Sdp. 140–150°C/17 Torr. Ausb. 1.51 g (82%) Gemisch aus 18 und 19 (13:87 nach NMR und analyt. GC). 300 mg Gemisch werden an 30 g mit 3% Wasser desaktiviertem Kieselgel mit Benzin/Äther (6:4) chromatographiert:

1-Acetyl-5-methylencyclooctan (18) wird als 1. Fraktion eluiert. Ausb. 25 mg.

IR: 3070 (=CH₂), 1710 (CO), 1635, 890 cm⁻¹ (=CH₂). - NMR: $\tau = 8.8 - 8.1$ (m, 4 CH₂), 8.0-7.6 (m, 2 CH₂), 7.97 (s, COCH₃), 7.5-7.1 (m, CH), 5.20 (s, =CH₂). - MS: m/e = 166 (2%, M[©]), 123 (94%), 81 (100%).

C₁₁H₁₈O (166.3) Ber. C 79.46 H 10.91 Gef. C 78.88 H 11.03

1-Methyl-1-(5-methylencyclooctyl)äthanol (19) wird als 2. Fraktion erhalten. Ausb. 210 mg. IR: 3610, 3460 (br, OH), 3070, 1635 (=CH₂), 930, 890 (=CH₂), 880, 870 cm⁻¹. – NMR: $\tau = 8.95$ (s, C(CH₃)₂), 8.8 - 8.0 (m, 4 CH₂), 7.9 - 7.6 (m, 2 CH₂, CH,OH), 5.25 (s, =CH₂). – MS: m/e = 182 (< 0.1%, M[©]), 149 (18%), 123 (36%), 96 (70%), 81 (74%), 59 (100%).

C₁₂H₂₂O (182.3) Ber. C 79.06 H 12.16 Gef. C 78.69 H 12.32

¹⁴⁾ Käufliches Produkt der Lithium Corporation of America.

6) mit CH3MgJ

625 mg (2.08 mmol) 9 werden in 5 ml absol. Äther gelöst und 10 ml (ca. 5 mmol) CH_3MgJ -Lösung zugetropft, 45 min erwärmt, mit Eiswasser hydrolysiert und wie üblich aufgearbeitet. 370 mg Rohprodukt werden an 18 g Kieselgel chromatographisch gereinigt und 275 mg (73%) 19 isoliert. Sdp. 40°C/0.01 Torr (Kugelrohr).

- 7) mit Natrium-acetylid
- 2.0 g Natrium werden in 100 ml flüssigem NH₃ unter Einleiten von Acetylengas gelöst, bei -50° C 730 mg (2.43 mmol) 9, gelöst in 15 ml absol. Äther, unter Rühren zugetropft, die Kühlung entfernt, das NH₃ in 1.5 h bei Raumtemp. abgedampft, mit wenig Wasser versetzt und mit Äther extrahiert. 425 mg Rohprodukt werden an 22 g Kieselgel chromatographisch gereinigt: I_1I -Diäthinyl-I-(5-methylencyclooctyl) methanol (20): Sdp. 60°C/0.01 Torr (Kugelrohr). Ausb. 300 mg (61%).

IR: 3600 (OH), 3310 (=CH), 3070 (=CH₂), 2100 (C=C), 1635, 885 cm⁻¹ (=CH₂). - NMR: $\tau = 8.8 - 7.5$ (m, CH₂, CH, OH), 7.66 (s, C=CH), 5.27 (s, =CH₂). - MS: m/e = 123 (100%), 81 (80%).

C₁₄H₁₈O (202.3) Ber. C 83.12 H 8.97 Gef. C 82.87 H 8.73

Substitutionsreaktionen zu 10-13

- 1) mit KCN
- a) 300 mg (1.0 mmol) 9 werden mit 78 mg (1.2 mmol) KCN in 5 ml absol. DMSO 42 h bei Raumtemp. stehengelassen. Die erhaltenen 186 mg Rohprodukt werden durch PSC mit Benzin/Äther (1:2) gereinigt.
 - 1. Fraktion: 31 mg, nicht identifiziert.
- 2. Fraktion: 1-(Cyanmethyl)bicyclo[3.3.1]nonan-9-on (10): Ausb. 94 mg (54%), Sdp. $110-120^{\circ}\text{C}/0.02$ Torr. Schmp. 68°C (aus Benzin/Äther).

IR (KBr): 2240 (C \equiv N), 1720 cm⁻¹ (CO). - NMR: $\tau = 8.7 - 7.3$ (m, 6 CH₂, CH), 7.64 (s, CH₂CN). - MS: m/e = 177 (91%, M $^{\oplus}$), 150 (10%), 137 (10%), 81 (100%).

C₁₁H₁₅NO (177.3) Ber. C 74.54 H 8.53 N 7.90 Gef. C 74.97 H 8.72 N 7.69

- b) 287 mg (0.96 mmol) 9 werden mit 68 mg (1.04 mmol) KCN in 20 ml absol. Dioxan unter N₂ 35 h auf 110°C erwärmt. Die isolierten 180 mg Rohprodukt bestehen nach dem GC und NMR zu 70% aus 10 und zu 30% aus einer nicht identifizierten Verbindung (identisch nach GC und NMR mit der 1. Fraktion von Ansatz a)).
- c) 2.03 g (6.32 mmol) 8 und 505 mg (7.78 mmol) KCN werden in 30 ml absol. DMSO 3 d bei 60-70°C gerührt. Die erhaltenen 1.27 g Rohprodukt werden an 100 g Kieselgel mit Benzin/Äther (4:6) chromatographiert. 405 mg (36%) 10 werden als 1. Fraktion, 675 mg (33%) 8 als 2. Fraktion eluiert.
 - 2) mit Natriumacetat
- a) 300 mg (1.0 mmol) 9 und 0.24 g (2.9 mmol) Natriumacetat werden in 2 ml Eisessig 1 h auf 100°C erwärmt, auf 3 g NaHCO₃ in 20 ml Eiswasser gegossen und 4 mal mit Äther extrahiert. Es werden 155 mg Gemisch aus 9 und 11 (1:2 nach NMR-Spektrum) erhalten und durch PSC mit Benzin/Äther (1:1) gereinigt. Dabei tritt Zersetzung von 9 zu einer als 1. Fraktion (17 mg) isolierten, nicht identifizierten Verbindung ein.
- 2. Fraktion: 1-(Acetoxymethyl)bicyclo[3.3.1]nonan-9-on (11): Sdp. 100-105°C/0.04 Torr (Kugelrohr). Ausb. 53 mg (25%).

IR: 1740 (OAc), 1715 (CO), 1240 cm⁻¹ (OAc). - NMR: $\tau = 8.6 - 7.7$ (m, 6 CH₂), 8.03 (s, O-CO-CH₃), 7.3-7.7 (m, CH-CO), 6.10 (s, CH₂OAc). - MS: m/e = 150 (13%), 96 (28%), 81 (42%), 67 (21%), 59 (100%).

C₁₂H₁₈O₃ (210.3) Ber. C 68.54 H 8.63 Gef. C 68.49 H 8.30

- b) 518 mg (1.61 mmol) 8 und 0.29 g (3.5 mmol) Natriumacetat werden in 5 ml Eisessig 30 h auf 115°C erhitzt und nach der Aufarbeitung 488 mg 8 erhalten.
 - 3) mit Natriumazid
- 450 mg (1.5 mmol) 9 werden mit 450 mg (6.9 mmol) NaN₃ in 15 ml absol. Methanol 3 d unter Rückfluß erwärmt, eingeengt, Wasser zugegeben und wie üblich aufgearbeitet: I-(Azidomethyl)bicyclo[3.3.1]nonan-9-on (12): Kristallisiert aus Benzin/Äther bei -30° C aus. Ausb. 263 mg (91%). Schmp. 35°C (aus Benzin/Äther).

IR: 2105 (N₃), 1715 cm⁻¹ (CO). - NMR: $\tau = 8.8 - 7.4$ (m, 6 CH₂, CH), 6.79 (s, CH₂N₃). - MS: m/e = 165 (2%), 138 (30%), 110 (100%), 109 (70%).

C₁₀H₁₅N₃O (193.3) Ber. C 62.15 H 7.82 N 21.75 Gef. C 62.13 H 7.61 N 21.77

- b) 425 mg (1.32 mmol) 8 werden mit 400 mg (6.15 mmol) NaN₃ in 15 ml absol. Methanol 3 d erhitzt und nach der Aufarbeitung 394 mg 8 isoliert.
 - 4) mit Dimedon-natrium

150 mg (1.00 mmol) Dimedon werden zu einer Lösung von 23 mg (1.0 mmol) Natrium in 1 ml absol. Methanol gegeben, zur Trockne eingeengt, in 1 ml absol. THF suspendiert, eine Lösung von 300 mg (1.00 mmol) 9 in 3 ml absol. THF zugegeben und unter N₂ 2 d bei 75°C gerührt, eingeengt, mit Wasser versetzt und aufgearbeitet (Äther). Die erhaltenen 273 mg (94%) Kristalle werden aus Benzin umkristallisiert: *1-(5,5-Dimethyl-3-oxo-1-cyclohexen-1-yl-oxymethyl)bicyclo[3.3.1]nonan-9-on* (13): Schmp. 88°C.

IR (KBr): 1705 (CO), 1650, 1600 (-O-C=C-C=O), 1210 cm⁻¹ (=C-O-). -NMR (CDCl₃): $\tau = 8.94$ (s, C(CH₃)₂), 8.6-7.7 (m, 6 CH₂), 7.82 (s, CH₂-C=), 7.74 (s, CH₂-CO), 7.3-7.6 (m, CH-CO), 6.28 (s, $-CH_2O-$), 4.63 (s, HC=C<). - MS: m/e = 290 (60%, M $^{\oplus}$), 275 (73%), 151 (36%), 149 (44%), 123 (36%), 81 (100%), 67 (58%). $-C_{18}H_{26}O_3$ (290.4) Ber. C 74.45 H 9.02 Gef. C 74.62 H 9.12

Hydrolyse von 13: 75 mg 13 werden mit 2.5 ml Methanol, 1 ml Wasser und 0.05 ml konz. Salzsäure 24 h bei Raumtemp, gerührt. Es werden 38 mg (88%) 7 isoliert.

Oxidation von 9 mit NaHCO₃ in DMSO zu 29: 301 mg (1.0 mmol) 9 werden in 3 ml absol. DMSO unter Durchleiten von N_2 und Rühren bei $100-110^{\circ}$ C zu 0.50 g NaHCO₃ in 2 ml absol. DMSO gegeben, nach 30 min auf Eis gegossen und aufgearbeitet. Ausb. 148 mg (89%) 1-Formylbicyclo[3.3.1]nonan-9-on (29): Sdp. $80-85^{\circ}$ C/0.05 Torr (Kugelrohr).

IR: 2740, 2720, 1730 (CHO), 1715 cm⁻¹ (CO). — NMR: $\tau = 8.6 - 7.4$ (m, 6 CH₂, CH), 0.37 (s, CHO). — MS: m/e = 166 (M[©], 0.5%), 138 (66%), 110 (100%), 95 (40%), 67 (40%).

C₁₀H₁₄O₂ (166.2) Ber. C 72.26 H 8.49 Gef. C 72.71 H 8.62

Versuch zur Oxidation von 6 bzw. 8 mit NaHCO3 in DMSO

- a) 0.82 g (2.55 mmol) 8 werden mit 0.9 g NaHCO₃ in 12 ml absol. DMSO wie oben a) 10 min auf 130-140°C, b) 4 h auf 120°C erwärmt, jedoch jeweils nur 0.73 g 8 wiedergewonnen.
- b) 732 mg (2.00 mmol) 6 werden mit 0.8 g NaHCO₃ in 4 ml absol. DMSO wie oben 7 h unter N_2 auf 120° C erwärmt, jedoch nur 667 mg 6 zurückgewonnen.

Reduktion von 8 mit NaBH4 bzw. LiBH4

a) 375 mg (1.16 mmol) 8 werden mit 50 mg (1.3 mmol) NaBH₄ in 25 ml absol. Dioxan 4 h unter Rückfluß erhitzt. Nach Abziehen des Dioxans wird Wasser zugegeben und aufgearbeitet. *1-(p-Tolylsulfonyloxymethyl)bicyclo[3.3.1]nonan-9-ol* (25): Ausb. 297 mg (79%), ölig.

IR (CHCl₃): 3610, 3500 (br, OH), 1600 (Aromat), 1360, 1190, 1175, 857 cm⁻¹ (SO₂OR). — NMR (CDCl₃): $\tau = 8.9 - 8.0$ (m, CH₂, CH), 8.0 - 7.8 (m, OH), 6.62, 6.15 (AB-Spektrum, J = 9 Hz, CH₂OTs), 6.61 – 6.47 (m, CHOH).

C₁₇H₂₄O₄S (324.4) Ber. C 62.93 H 7.46 S 9.88 Gef. C 63.09 H 7.34 S 9.82

b) 543 mg (1.7 mmol) 8 werden in 10 ml absol. THF mit 70 mg (3.2 mmol) LiBH₄ 2 h erwärmt und 348 mg (63%) 25 erhalten.

Jones-Oxidation von 25 zu 8: 106 mg (0.33 mmol) 25, gelöst in 1 ml Aceton, werden bei Raumtemp. 1 h mit einer Lösung von 60 mg CrO₃ in 0.05 ml konz. Schwefelsäure und 0.4 ml Wasser gerührt. Ausb. 67 mg (64%) 8.

1-(Hydroxymethyl)bicyclo[3.3.1]nonan-9-ol-1',9-carbonat (26): 800 mg (2.48 mmol) 25 werden wie oben mit 20 ml absol. DMSO und 1.0 g (12 mmol) NaHCO₃ 1.5 h bei 80°C gerührt. Die erhaltenen 500 mg Produkt werden aus Äther umkristallisiert. Ausb. 365 mg (76%). Schmp. 154°C.

IR (KBr): 1745 (OCO₂), 1190, 1100 cm⁻¹ (C-O-). - NMR (HA-100, CDCl₃): $\tau = 8.8-7.7$ (m, CH₂, CH), 6.12, 6.02 (AB-Spektrum, J = 10.5 Hz, CH₂-O-CO-O), 5.77 (d, J = 3.5 Hz, CH-O-CO-O). - MS: m/e = 196 (< 1%, M[©]), 168 (1%), 156 (2%), 135 (13%), 121 (22%), 111 (100%), 93 (31%), 81 (46%), 67 (41%).

C₁₁H₁₆O₃ (196.3) Ber. C 67.32 H 8.22 Gef. C 67.58 H 8.48

Reduktion von 6 zu 5: 1.15 g (3.1 mmol) 6 werden in 20 ml absol. Äther gelöst und zu einer Suspension von 0.20 g (5.2 mmol) LiAlH₄ in 20 ml absol. Äther getropft, 5 h gerührt und wie üblich aufgearbeitet. Ausb. 0.50 g (75%) 5, Sdp. $85-95^{\circ}$ C/0.04 Torr.

1-(p-Tolylsulfonyloxymethyl)bicyclo[3.3.1]nonan (32): 250 mg 30 werden in 20 ml Äthanol mit Raney-Nickel 7 d unter Rückfluß erhitzt, filtriert, eingeengt und vom unumgesetzten kristallinen 30 am Kugelrohr (bis 100° C/0.01 Torr) das 1-(Hydroxymethyl)bicyclo[3.3.1]nonan (31) abdestilliert. Ausb. 102 mg, noch unrein. — NMR: $\tau = 6.92$ (s, CH₂OH).

31 wird in 0.3 ml absol. Pyridin mit 130 mg Tosylchlorid 3 d stehengelassen, wie üblich aufgearbeitet und durch PSC mit Benzin/Äther (3:7) gereinigt. Ausb. 43 mg 32, Schmp. 76°C (aus Äthanol).

IR (KBr): 1600 (Aromat), 1345, 1170, 960, 940, 830, 815 cm⁻¹ (SO₂OR). — NMR (CDCl₃): $\tau = 8.8 - 8.0$ (m, CH₂, CH), 6.46 (s, CH₂OTs).

C₁₇H₂₄O₃S (308.4) Ber. C 66.20 H 7.84 S 10.39 Gef. C 65.83 H 7.59 S 9.84 [57/74]